Signal Transduction Targeted Deletion and Lipidomic Analysis Identify Epithelial Cell COX-2 as a Major Driver of Chemically Induced Skin Cancer
نویسندگان
چکیده
Pharmacologic and global gene deletion studies demonstrate that cyclooxygenase-2 (PTGS2/COX-2) plays a critical role in DMBA/TPA–induced skin tumor induction. Although many cell types in the tumor microenvironment express COX-2, the cell types in which COX-2 expression is required for tumor promotion are not clearly established.Here, cell type–specificCox-2 gene deletion reveals a vital role for skin epithelial cell COX-2 expression in DMBA/TPA tumor induction. In contrast, myeloid Cox-2 gene deletion has no effect on DMBA/TPA tumorigenesis. The infrequent, small tumors that develop on mice with an epithelial cell–specific Cox-2 gene deletion have decreased proliferation and increased cell differentiation properties. Blood vessel density is reduced in tumors with an epithelial cell–specific Cox-2 gene deletion, compared with littermate control tumors, suggesting a reciprocal relationship in tumor progression between COX-2–expressing tumor epithelial cells and microenvironment endothelial cells. Lipidomics analysis of skin and tumors from DMBA/TPA–treated mice suggests that the prostaglandins PGE2 and PGF2a are likely candidates for the epithelial cell COX-2–dependent eicosanoids that mediate tumor progression. This study both illustrates the value of cell type–specific gene deletions in understanding the cellular roles of signal-generating pathways in complex microenvironments and emphasizes the benefit of a systems-based lipidomic analysis approach to identify candidate lipid mediators of biologic responses. Implications: Cox-2 gene deletion demonstrates that intrinsic COX-2 expression in initiated keratinocytes is a principal driver of skin carcinogenesis; lipidomic analysis identifies likely prostanoid effectors. Mol Cancer Res; 12(11); 1677–88. 2014 AACR.
منابع مشابه
Targeted deletion and lipidomic analysis identify epithelial cell COX-2 as a major driver of chemically induced skin cancer.
UNLABELLED Pharmacologic and global gene deletion studies demonstrate that cyclooxygenase-2 (PTGS2/COX-2) plays a critical role in DMBA/TPA-induced skin tumor induction. Although many cell types in the tumor microenvironment express COX-2, the cell types in which COX-2 expression is required for tumor promotion are not clearly established. Here, cell type-specific Cox-2 gene deletion reveals a ...
متن کاملThe Canonical Wnt Signaling (Wnt/β-Catenin Pathway): A Potential Target for Cancer Prevention and Therapy
Precise regulation of signal transduction pathways is crucial for normal animal development and for maintaining cellular and tissue homeostasis in adults. The Wnt/Frizzled-mediated signaling includes canonical and non-canonical signal transduction pathways. Upregulation or downregulation of the canonical Wnt-signaling (or the Wnt/β-Catenin signal transduction) leads to a variety of human diseas...
متن کاملEffects of low dose radiation on the expression of proteins related to DNA repair requiring Caveolin-1 in human mammary epithelial cells
Background: Radiotherapy is an effective and important therapeutic method for breast cancer, but at the same time it has a radiation-induced bystander effect on normal tissue around the tumor. Repair of double-strand breaks (DSBs) by normal cells can reduce the extent of damage caused by this effect. Caveolin-1 (Cav-1) is an important regulatory molecule in cell signal transduction. However, th...
متن کاملEGFR Blockade Reverses Cisplatin Resistance in Human Epithelial Ovarian Cancer Cells
Background: Epithelial ovarian cancer (EOC) is one of the most lethal gynecological malignancy worldwide. Although the majority of EOC patients achieve clinical remission after induction therapy, over 80% relapse and succumb to the chemoresistant disease. Previous investigations have demonstrated the association of epidermal growth factor receptor (EGFR) with resistance to cytotoxic chemotherap...
متن کاملSTAT2 contributes to promotion of colorectal and skin carcinogenesis.
Signal transducer and activator of transcription 2 (STAT2) is an essential transcription factor in the type I IFN (IFN-alpha/beta) signal transduction pathway and known for its role in mediating antiviral immunity and cell growth inhibition. Unlike other members of the STAT family, IFNs are the only cytokines known to date that can activate STAT2. Given the inflammatory and antiproliferative du...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014